Skip to content

NVIDIA Driver and CUDA Installation on Ubuntu Linux

In this article

This instructional guide details the procedure for installing NVIDIA graphics card drivers and CUDA on the subsequent operating systems: Ubuntu 22.04, Ubuntu 24.04.

Attention

For proper operation of Tesla series graphics cards (e.g., NVIDIA Tesla T4), ensure that the server's BIOS has the parameter 'above 4G decoding' or 'large/64bit BARs' or 'Above 4G MMIO BIOS assignment' enabled.

System Preparation

  1. Update the system:

    sudo apt update && sudo apt full-upgrade -y
    
  2. For RTX 4xxx, 5xxx series, A100, and H100 on Ubuntu 22.04, you need to update the kernel version. You can also update the kernel version for older graphics cards:

    sudo apt install linux-generic-hwe-22.04
    

Installing CUDA and Nvidia Drivers from the Repository

CUDA is a parallel computing platform and programming model developed by NVIDIA that enables developers to harness the power of modern GPUs for general-purpose computing, data analysis, and machine learning applications.

While the Ubuntu multiverse repository includes packages for CUDA drivers, they might not be the latest version. To install them, follow these steps:

  1. Install Nvidia drivers using the command:

    nvidia_driver_download
    
    You'll be prompted to agree to the license agreement by typing y. After package installation, the server will disconnect for a reboot.

  2. Once back on the server, install CUDA packages with the command:

    sudo apt install nvidia-cuda-toolkit
    
  3. Verify the installation using the commands nvidia-smi and nvcc -V as explained in the next section.

Installing the Latest Version of CUDA and Nvidia Drivers

If you require the latest version of drivers and CUDA (or a specific version), you need to install from the Nvidia repository.

  1. Install the gcc compiler, necessary for compiling CUDA:

    sudo apt install gcc
    
  2. Download and install drivers and CUDA. For Ubuntu 24.04, replace ubuntu2204 with ubuntu2404 in the path of wget:

    wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb
    sudo dpkg -i cuda-keyring_1.1-1_all.deb
    sudo apt update
    sudo apt install cuda-toolkit -y
    
  3. Set environment variables for your frameworks and applications to detect CUDA in your .bashrc:

    echo 'export PATH="/sbin:/bin:/usr/sbin:/usr/bin:${PATH}:/usr/local/cuda/bin"' >> ~/.bashrc
    echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64\${LD_LIBRARY_PATH:+:\${LD_LIBRARY_PATH}}' >> ~/.bashrc
    source ~/.bashrc
    

    Attention

    You must run these commands for all users who need to use CUDA.

  4. Check the installation of drivers on your video card:

    sudo nvidia-smi
    

    You should get output similar to this:

    user@48567:~$ nvidia-smi
    Fri May 10 15:58:17 2024
    +-----------------------------------------------------------------------------------------+
    | NVIDIA-SMI 550.54.15              Driver Version: 550.54.15      CUDA Version: 12.4     |
    |-----------------------------------------+------------------------+----------------------+
    | GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
    |                                         |                        |               MIG M. |
    |=========================================+========================+======================|
    |   0  NVIDIA RTX A4000               Off |   00000000:07:00.0 Off |                  Off |
    | 41%   31C    P8             15W /  140W |       3MiB /  16376MiB |      0%      Default |
    |                                         |                        |                  N/A |
    +-----------------------------------------+------------------------+----------------------+
    
    +-----------------------------------------------------------------------------------------+
    | Processes:                                                                              |
    |  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
    |        ID   ID                                                               Usage      |
    |=========================================================================================|
    |  No running processes found                                                             |
    +-----------------------------------------------------------------------------------------+
    

    Attention

    If you received a message like modprobe: ERROR: could not insert 'nvidia': Device or resource busy during installation, you need to remove the nouveau kernel module and enable the use of nvidia modules.

    sudo rmmod -f nouveau
    sudo nvidia-smi
    

    Note

    You can find the latest instructions for installing Nvidia GPU drivers on Ubuntu here.

  5. Check the CUDA installation:

    nvcc -V
    

    After a successful installation, you should get output similar to this:

    user@48567:~$ nvcc -V
    nvcc: NVIDIA (R) Cuda compiler driver
    Copyright (c) 2005-2024 NVIDIA Corporation
    Built on Thu_Mar_28_02:18:24_PDT_2024
    Cuda compilation tools, release 12.4, V12.4.131
    Build cuda_12.4.r12.4/compiler.34097967_0
    

Attention

If you encounter an error like Failed to initialize NVML: Driver/library version mismatch after installation, you need to re-initialize the Nvidia kernel modules by removing them and running nvidia-smi again.

sudo rmmod -f nvidia-modeset
sudo rmmod nvidia_uvm
sudo rmmod nvidia_drm
sudo rmmod nvidia-peermem
sudo rmmod nvidia
sudo nvidia-smi 

Installing NVIDIA modules for Docker

If you're using Docker containers, don't forget to install the nvidia-docker2 package:

sudo apt install -y nvidia-docker2
sudo systemctl restart docker

One-Click Installation of Drivers and CUDA 12

You can use this script for automatic installation of drivers and CUDA 12:

```bash

!/bin/bash

Update and upgrade the system using apt

sudo apt update sudo apt upgrade -y

Check Ubuntu 22.04 and update kernel

lsb_release=\((lsb_release -a | grep "22.04") if [[ -n "\)lsb_release" ]]; then sudo apt install -y linux-generic-hwe-22.04 fi

Install GCC compiler for CUDA install

sudo apt install gcc -y

Get the release version of Ubuntu

RELEASE_VERSION=$(lsb_release -rs | sed 's/\([0-9]\+\).\([0-9]\+\)/\1\2/')

Download and install CUDA package for Ubuntu and Nvidia drivers

wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu${RELEASE_VERSION}/x86_64/cuda-keyring_1.1-1_all.deb sudo dpkg -i cuda-keyring_1.1-1_all.deb

Update and upgrade the system again to ensure all packages are installed correctly

sudo apt update sudo apt install cuda-toolkit -y

Add PATH and LD_LIBRARY_PATH environment variables for CUDA in .bashrc file

echo 'export PATH="/sbin:/bin:/usr/sbin:/usr/bin:${PATH}:/usr/local/cuda/bin"' >> ~/.bashrc echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}' >> ~/.bashrc source ~/.bashrc

Initialize kernel modules without reboot

sudo rmmod -f nouveau sudo nvidia-smi

nvcc -V

Installing Docker binding for Nvidia

if command -v docker &> /dev/null; then echo "Docker is installed." sudo apt install -y nvidia-docker2 sudo systemctl restart docker else echo "Docker is not installed." fi ``